Matrix-assisted autologous chondrocyte transplantation for remodeling and repair of chondral defects in a rabbit model.

نویسندگان

  • Markus T Berninger
  • Gabriele Wexel
  • Ernst J Rummeny
  • Andreas B Imhoff
  • Martina Anton
  • Tobias D Henning
  • Stephan Vogt
چکیده

Articular cartilage defects are considered a major health problem because articular cartilage has a limited capacity for self-regeneration (1). Untreated cartilage lesions lead to ongoing pain, negatively affect the quality of life and predispose for osteoarthritis. During the last decades, several surgical techniques have been developed to treat such lesions. However, until now it was not possible to achieve a full repair in terms of covering the defect with hyaline articular cartilage or of providing satisfactory long-term recovery (2-4). Therefore, articular cartilage injuries remain a prime target for regenerative techniques such as Tissue Engineering. In contrast to other surgical techniques, which often lead to the formation of fibrous or fibrocartilaginous tissue, Tissue Engineering aims at fully restoring the complex structure and properties of the original articular cartilage by using the chondrogenic potential of transplanted cells. Recent developments opened up promising possibilities for regenerative cartilage therapies. The first cell based approach for the treatment of full-thickness cartilage or osteochondral lesions was performed in 1994 by Lars Peterson and Mats Brittberg who pioneered clinical autologous chondrocyte implantation (ACI) (5). Today, the technique is clinically well-established for the treatment of large hyaline cartilage defects of the knee, maintaining good clinical results even 10 to 20 years after implantation (6). In recent years, the implantation of autologous chondrocytes underwent a rapid progression. The use of an artificial three-dimensional collagen-matrix on which cells are subsequently replanted became more and more popular (7-9). MACT comprises of two surgical procedures: First, in order to collect chondrocytes, a cartilage biopsy needs to be performed from a non weight-bearing cartilage area of the knee joint. Then, chondrocytes are being extracted, purified and expanded to a sufficient cell number in vitro. Chondrocytes are then seeded onto a three-dimensional matrix and can subsequently be re-implanted. When preparing a tissue-engineered implant, proliferation rate and differentiation capacity are crucial for a successful tissue regeneration (10). The use of a three-dimensional matrix as a cell carrier is thought to support these cellular characteristics (11). The following protocol will summarize and demonstrate a technique for the isolation of chondrocytes from cartilage biopsies, their proliferation in vitro and their seeding onto a 3D-matrix (Chondro-Gide, Geistlich Biomaterials, Wollhusen, Switzerland). Finally, the implantation of the cell-matrix-constructs into artificially created chondral defects of a rabbit's knee joint will be described. This technique can be used as an experimental setting for further experiments of cartilage repair.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix-Associated and Autologous Chondrocyte Transplantation in the Ankle

BACKGROUND New matrix-associated autologous chondrocyte transplantation (MACT) techniques may facilitate the treatment of chondral defects in talar cartilage and provide good clinical outcome in the long term. The aim of this prospective case series was to monitor the clinical outcome after autologous chondrocyte transplantation (ACT) and MACT in the ankle to gain data on the mid-term efficacy ...

متن کامل

Matrix-induced autologous chondrocyte implantation for a large chondral defect in a professional football player: a case report

INTRODUCTION Matrix-assisted autologous chondrocyte implantation is a well-known procedure for the treatment of cartilage defects, which aims to establish a regenerative milieu and restore hyaline cartilage. However, much less is known about third-generation autologous chondrocyte implantation application in high-level athletes. We report on the two-year follow-up outcome after matrix-assisted ...

متن کامل

Using Xenogenic (Calf Foetal) Osteochondral Transplantation for Articular Cartilage Defect in Rabbit Model

Background: The destruction of articular cartilage is the major cause of articular problems. The articular cartilage has little repair postertial due to lack of perichondrium and direct blood circulation. It is, therefore important to consider this phenomena in surgical treatments. One of the articular cartilage reconstructive surgeries is using Osteo-Chondral graft. The main purpose of this re...

متن کامل

Evolution of Autologous Chondrocyte Repair and Comparison to Other Cartilage Repair Techniques

UNLABELLED Articular cartilage defects have been addressed using microfracture, abrasion chondroplasty, or osteochondral grafting, but these strategies do not generate tissue that adequately recapitulates native cartilage. During the past 25 years, promising new strategies using assorted scaffolds and cell sources to induce chondrocyte expansion have emerged. We reviewed the evolution of autolo...

متن کامل

Autologous Matrix-Induced Chondrogenesis (AMIC)

Options for the treatment of cartilage defects include chondral resurfacing with abrasion, debridement, autologous chondrocyte transplantation (ACT), matrix-induced chondrocyte transplantation (MACI), or osteochondral autologous transplantation (OATS). This article describes the new method of autologous matrix-induced chondrogenesis (AMIC), a 1-step procedure combining subchondral microfracture...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of visualized experiments : JoVE

دوره 75  شماره 

صفحات  -

تاریخ انتشار 2013